skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ha, Junhyoung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This article addresses the kinematic control of a redundant soft robotic arm. Full pose kinematic control of soft robots is challenging because direct application of the classical controllers developed based on rigid robots to soft robots could lead to unreliable or infeasible motions. In this study, we explore the manipulability property of a soft robotic arm and develop an advanced resolved-rate controller that prioritizes position over orientation control and switches its modes and gains based on position and orientation manipulabilities, enabling stable motion even when the robot is close to the singular configurations. The simulation and experimental results indicate that our proposed method outperforms previous methods in terms of both accuracy and smoothness during operation. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026